Sustainable Refrigeration Summit

Connecting the Pieces for Supermarket Refrigeration Solutions

NORTH AMERICAN Sustainable Refrigeration Council

nasrc.org

Thank You To Our Sponsors!

Premier Sponsors

Champion Sponsors

Day 1: Monday, October 24			Day 4: Thursday, October 27			
9AM-10AM PST Keynote: Industry & Regulatory Trends	11AM-2PM PST Technology Focus: Driving CO2 Performance	1PM-2PM PST CO2 Systems: What Retailers Need to Know	9AM-10AM PST Solving the Technician Shortage	11AM-12PM PST Technology Focus: Natural Innovations		1PM-2PM PST Reducing Refrigerant Emissions
Day 2: Tuesday, October 25			Day 5: Friday, October 28			
9AM-10AM PST Distributed and Self- contained Systems	11AM-12PM PST Technology Focus: Total Cost of Ownership	1PM-2PM PST Measuring Performance of Natural Technologies	9AM-10:30AM PST State & Federal HFC Regulations		11AM-12:30AM PST Workshop: Utility Incentives for Refrigerant GWP	
Day 3: Wednesday, October 26			Sum	mit		
9AM-10AM PST Integrating Naturals into Existing Stores	11AM-12PM PST Technology Focus: Modular Tech. for Existing Stores	1PM-2PM PST Funding for Naturals	Program			

Housekeeping & Logistics

Question and Answer Session

- Participants are muted
- Questions will be moderated at the end
- To ask a question, enter your comment into the **Q&A section**

Need Help? Click the Support button on sustainablerefrigeration.com

Missed a Session? Session recordings and slides will be available on the platform

NORTH AMERICAN Sustainable Refrigeration Council

NASRC Staff

Danielle Wright Executive Director

Morgan Smith Program & Communications Director

Jeanne Ackerman Membership & Communications Coordinator

Contact us at info@nasrc.org

Distributed and Self-contained Systems

Retailers and their partners share experience with distributed and selfcontained systems, including Propane (R290) and alternative options.

Michael Dellecave

Manager of Mechanical Services The Kroger Co.

Andrew Beall

Director of Refrigeration and Energy WinCo Foods

Ben Rosenzweig

Vice President and General Manager CoolSys Energy Design

Distributed and Systems

Ben Rosenzweig, PE October 25, 2022

- Definitions to frame the conversation
- Summary, Pros, and Cons of macro- and microdistributed systems
- Micro-Distributed Deep Dive:
 - Commercially available options for micro-distributed systems
 - What refrigerants are being used
 - Ways to apply in existing stores

Definitions

(Traditional) Macro-Distributed System

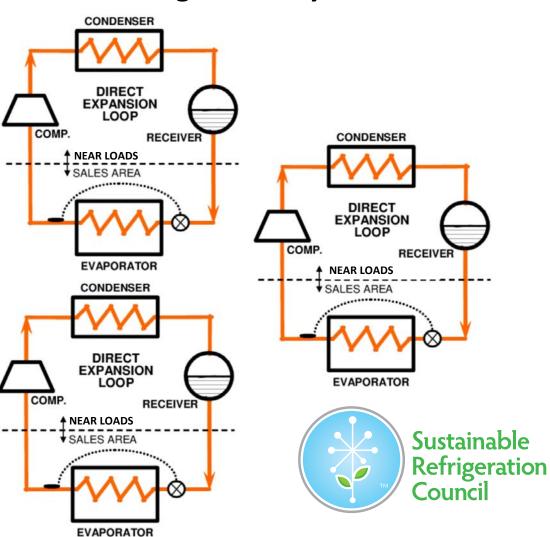
Several small to medium sized compressor racks distributed throughout a store, located strategically near their case and coil loads. Can be designed and specified with low-GWP refrigerants like CO2 and typically have remote condensers or gas coolers per rack.

Self-Contained Systems

General term covering packaged refrigeration equipment/fixtures that typically do not require remote equipment to operate other than requisite electrical and sometimes plumbing drain connections. Like beverage merchandizers at check stands.

Micro-Distributed System

Many small compressor systems distributed throughout a store, typically located along case lineups and in place of traditional walk-in evaporator coils. In many cases these are comprised of interconnected and/or independent self-contained equipment.



Macro-Distributed Systems Traditional, Central DX Refrigeration System CONDENSER DIRECT **EXPANSION** LOOP COMP. RECEIVER ↑ MECHANICAL ROOM SALES AREA **EVAPORATOR**

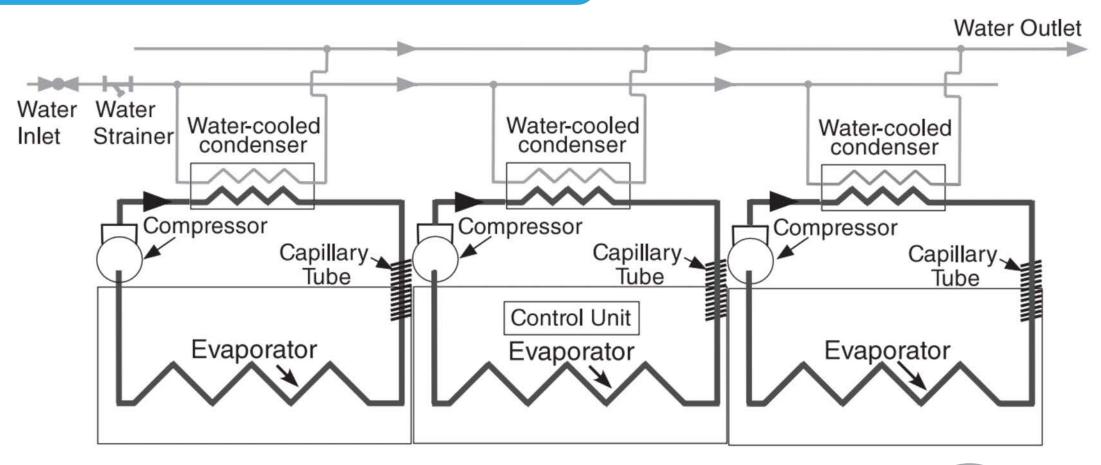
Traditional Distributed Refrigeration System

Macro-Distributed Systems

Pros

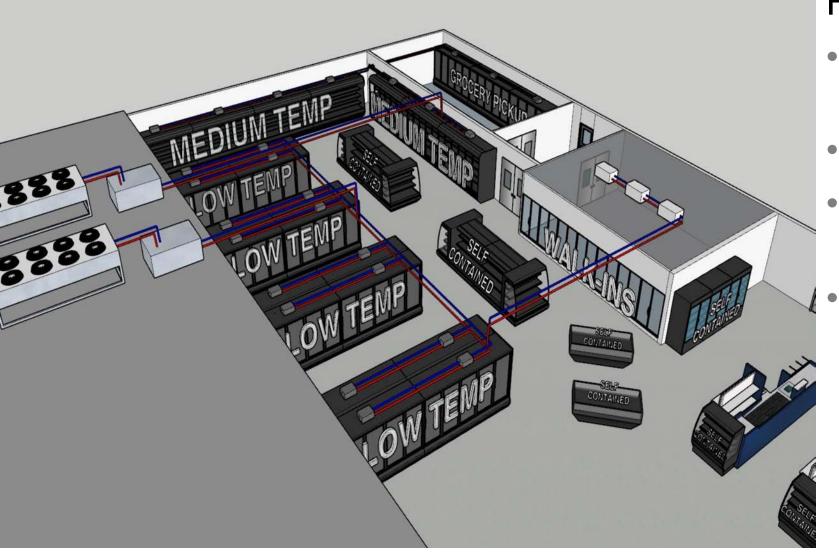
- Air- and water-cooled options
- More flexible than a single, central system
- <50 lb. low-charge systems with synthetic refrigerants
- Natural refrigerant options including CO₂

• Similar controls to traditional, central systems


Cons & Challenges

- Equipment installation can be complicated depending on building architecture and structure
- High-side piping system almost always required
- More, distributed items to maintain
- Not necessarily energy saving

Micro-Distributed Systems



Sustainable Refrigeration Council

Diagram Credit: ASHRAE

Micro-Distributed Systems

Highlights

- Can be applied to whole or part of a store
- Air- or water-cooled
- Natural and synthetic refrigerant options
- Flexible

Sustainable Refrigeration Council

Diagram Credit: ASHRAE

Micro-Distributed Systems

Pros

- Air- and water-cooled options
- Flexible not piped to central rack
- <50 lb. low-charge systems with synthetic refrigerants
- Natural refrigerant options, typically R290, future CO₂

- Most water-cooled units have a wide inlet water temperature range
- Less complicated controls

Cons & Challenges

- Primary natural refrigerant option, R290, limited to 150 grams/charge
- Air-cooled rejects significant heat into store
- More, distributed items to maintain
- Not necessarily energy saving
- Fewer controls options

What Refrigerants are Being Used?

- R290, propane, is the most popular low-GWP, natural refrigerant choice for micro-distributed systems
- R448 and other synthetics are popular amongst other <50 lb. qualifying micro-distributed system architectures
- Other A1 and A2L refrigerants are being tested and developed for used in MD systems
- CO₂ is an option for macro-distributed systems and soon should be for micro-distributed systems as well

Most Widely Used Commercially Available Options

- Hussmann microDS: water-cooled, R290
- Hussmann microSC: air-cooled, R290
- Hillphoenix SoloChill: water-cooled, DX, <50 lbs.
- Hillphoenix Second Nature: air-cooled, SC R290 fixtures
- AHT Cooling Systems: air- and water-cooled, R290
- Emerson Copeland Indoor Modular Solution: R448, R290
- Novum LEAP: air-cooled, R290

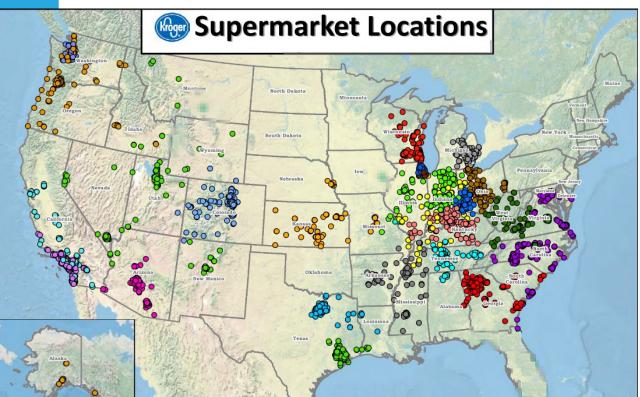
*Not all micro-distributed and low-GWP self-contained options are listed.

A Look Into The Future

Micro-distributed, subcritical CO₂ with a chilled water loop

- CO_2 as the refrigerant (GWP = 1)
- Chilled water loop:
 - Low-GWP chiller options
 - CO₂ condensing unit use
 - HVAC system use
- No charge limit means more fixture options and flexibility

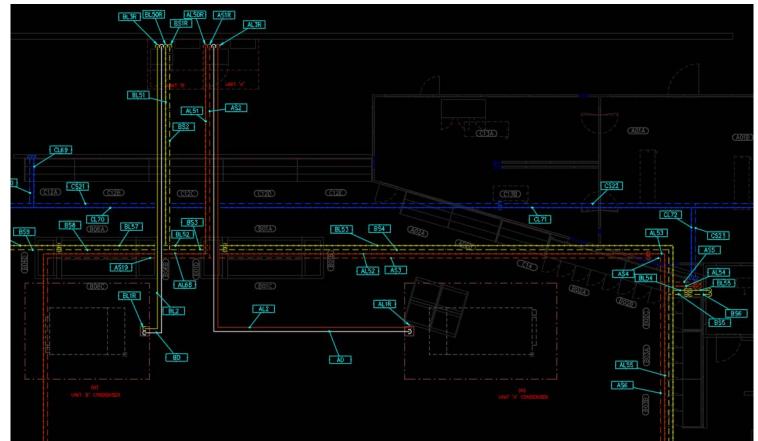
Photo Credit: Carel Heosbox CO₂


Application in Existing Stores

- Option to install a store-wide water loop with capacity for progressive remodel and low-GWP conversion
- Replacement of traditional case line-ups and walk-in systems with low-GWP alternatives without replacing entire systems
- Many like-for-like island and specialty merchandizers now available
- Carefully consider impact of air-cooled equipment on existing HVAC systems

The Kroger Co.

- Operate over 2,700 stores under many banners.
- 35 States


Goals and Refrigerant Role

- Kroger's current target is to reduce greenhouse gas (GHG) emissions by 30% by 2030, from a 2018 baseline.
- Refrigerants play an important role in achieving that goal.
- In our stores, we use a four-pronged approach:
 - Proactive leak monitoring, mitigation and reduction
 - Replacing aging refrigeration systems to improve energy efficiency and reduce refrigerant charge/emissions
 - Proper management of refrigerant inventory, to reduce waste and ensure responsible reclaim practices
 - Transition to refrigerants with lower global warming potential (GWP)

Current System Architecture

- Currently, Systems in New Construction are a Distributed design.
- Typically, 4 or 5 units.
- Air cooled unless the design ambient dictates adiabatic.
- Refrigerant Piping and Charge are significantly reduced compared to conventional systems.
- Utilizing an HFO blend with a GWP below 1,400.

New Architecture Options

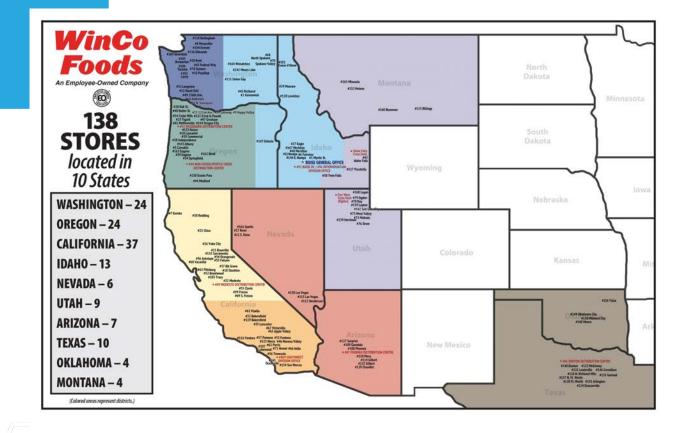
- Self-Contained
- ≻ CO2
- A2L Distributed
- We do not see any one solution being suitable for all scenarios.
- A combination of technologies is likely.
- We **need** options.

A2L Distributed Option

- Similar to the design we use today with a few changes
 - Need to use A2L refrigerants to get below 150 GWP.
 - Charge limits due to the A2L designation will require more, smaller distributed units.
 - Design considerations such as system location, condenser type and receiver size will be important in further reducing charge size and number of systems needed.
 - More sophisticated leak detection requirements and mitigation.

A2L Distributed Potential Benefits

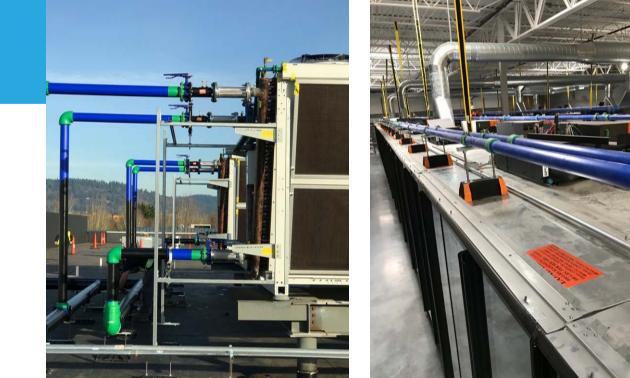
A2L Distributed Challenges


- Code Adoption
- Timeline
- Components
- Leak Detection/Mitigation

MDS – WinCo Overview

WinCo Data

- Typical store ~85,000 square feet
- ~145 cases & walk-in evaporators
- 13 stores are MDS stores
- All MDS stores use R-448A



- Refrigeration Goals for MDS stay below 50 lb Full Charge Amount (FCA)
 - Meet CARB 2026 and 2030 Greenhouse Gas Potential (GHGp) reduction targets
 - Allow to meet Future WA reduction targets
- Currently Multi-Year Remodel Program in CA
 - 39% towards 2026 GHGp Target/ 18% towards 2030 GHGp Target
 - Future WA Remodel program

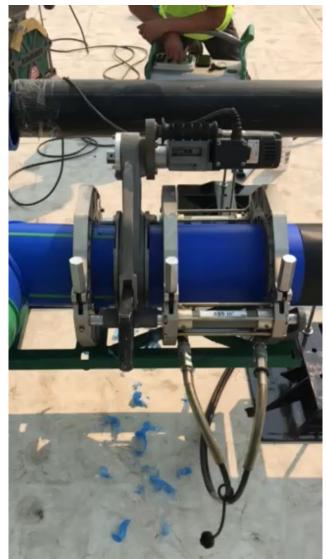
WinCo – Technology

- System Type:
 - R-448A
 - Most Cases Operate as Self-Contained Connected to Central Hydronic Condensing Loop
- Advantages
 - Ability to Utilize the Same Case Manufacturer as DX Stores
 - Availability of R-448A versus CO2
 - R-290 Charge Limits do not Allow for High Volume End Users
 - Simplicity of the MDS System Compared to Natural Refrigerants

WinCo – Tech Cont'd

- Performance Metrics
 - GHGp Reduction for CARB Compliance
 - Energy? Still Evaluating... Normalizing Data can be Difficult
 - Reduced Maintenance?
 - Needs more time, all systems look good until Year 5...

WinCo – Opportunities


- Technician Considerations
 - Refrigeration Installer
 - Need all skill sets for installation from case setter, pipefitter, controls installer, startup tech
 - The Installer needs to have a true Startup Tech
 - Needs to be competent at troubleshooting communication and programming issues and willing to get into the weeds
 - All techs need to know what questions to ask and when to ask the questions
 - MUST BE WILLING TO LEARN!!!
 - Knows that the Owner wants the system to work and will support techs who want to learn and challenge the design team and programming

WinCo – Opportunities

Hydronic System

- Best to have a mechanical piping installer, preferable to have an installer with large commercial and industrial experience with Polypropylene (PPR) Piping experience
- For Remodels, the hydronic loop will dictate phasing of the project
- Pipe placement is key, keep it out of the way of operations
- Structural considerations for the larger Adiabatic Fluid Coolers
- Must have pipe flushing experience
- Must know manufacturer's installation process for PPR Pipe

